Vamos a comentar las diferencias entre los conjuntos de Entrenamiento, Validación y Test utilizados en Machine Learning ya que suele haber bastante confusión en para qué es cada uno y cómo utilizarlos adecuadamente. Intentaré hacerlo mediante un ejemplo práctico por eso de ser didácticos 🙂 Además veremos que tenemos distintas técnicas de hacer la validación […]
Tag: entrenar
Clasificación de Imágenes en Python
Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes. En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉 Ejercicio Propuesto: Clasificar imágenes […]
¿Comprar casa o Alquilar? Naive Bayes usando Python
Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar? Veamos si la Ciencia de Datos nos puede ayudar a resolver […]
Clasificar con K-Nearest-Neighbor ejemplo en Python
K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos “más similares” (por cercanía) […]
Una sencilla Red Neuronal en Python con Keras y Tensorflow
historCrearemos una red neuronal artificial muy sencilla en Python con Keras y Tensorflow para comprender su uso. Implementaremos la compuerta XOR e intentaré comparar las ventajas del aprendizaje automático frente a la programación tradicional. Requerimientos para el ejercicio Puedes simplemente leer el código y comprenderlo o si quieres ejecutarlo deberás tener un ambiente de desarrollo […]
Qué es overfitting y underfitting y cómo solucionarlo
Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting como “subajuste” y hacen referencia al […]