En este nuevo artículo de Aprende Machine Learning explicaremos qué son los outliers y porqué son tan importantes, veremos un ejemplo práctico paso a paso en Python, visualizaciones en 1, 2 y 3 dimensiones y el uso de una librería de propósito general. Puedes encontrar la Jupyter Notebook completa en GitHub. ¿Qué son los […]
Tag: Visualización
Sistemas de Recomendación
Crea en Python un motor de recomendación con Collaborative Filtering Una de las herramientas más conocidas y utilizadas que aportó el Machine Learning fueron los sistemas de Recomendación. Son tan efectivas que estamos invadidos todos los días por recomendaciones, sugerencias y “productos relacionados” aconsejados por distintas apps y webs. Sin dudas, los casos más conocidos […]
Clasificación de Imágenes en Python
Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes. En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉 Ejercicio Propuesto: Clasificar imágenes […]
Comprende Principal Component Analysis
En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn. Introducción a PCA Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en […]
¿Comprar casa o Alquilar? Naive Bayes usando Python
Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar? Veamos si la Ciencia de Datos nos puede ayudar a resolver […]
Clasificar con K-Nearest-Neighbor ejemplo en Python
K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos “más similares” (por cercanía) […]